RhoA-mediated signaling in Notch-induced senescence-like growth arrest and endothelial barrier dysfunction.
نویسندگان
چکیده
OBJECTIVE Notch signaling has a critical role in vascular development and morphogenesis. Activation of Notch in endothelial cells led to a senescence-like phenotype with loss of barrier function. Our objective was to understand the molecular pathways mediating this phenotype. METHODS AND RESULTS Human primary endothelial cells increase expression of Notch receptors and ligands during propagation in vitro toward natural senescence. This senescence was induced at low passage with Notch activation. We characterized the pathways activated downstream of Notch signaling. Notch was activated by Delta-like 4 ligand or constitutively active Notch receptors and measured for cell proliferation, migration, and sprouting. Notch signaling triggered early senescence in low-passage cells, characterized by increased p53 and p21 expression. The senescence phenotype was associated with hyperpermeability of the monolayer, with disrupted vascular endothelial cadherin and β-catenin levels and localization. Consistent with changes in cell shape and contact, we demonstrated that Notch activation increases myosin light chain phosphorylation by activating Rho kinase. Inhibition of Rho abrogated Notch-induced myosin light chain phosphorylation and led to enhanced barrier function by reorganizing F-actin to β-catenin-containing cell-cell adherens junctions. CONCLUSIONS Our findings show that RhoA/Rho kinase regulation by Notch signaling in endothelial cells triggers a senescence phenotype associated with endothelial barrier dysfunction.
منابع مشابه
Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation.
Lung edema due to increased vascular permeability is a hallmark of acute lung injury and acute respiratory distress syndrome. Both p38 and RhoA signaling events are involved in transforming growth factor (TGF)-beta1-increased endothelial permeability; however, the mechanism by which these pathways cooperate is not clear. In this study, we hypothesized that TGF-beta1-induced changes in endotheli...
متن کاملPKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction.
Much evidence indicates that cAMP-dependent protein kinase (PKA) prevents increased endothelial permeability induced by inflammatory mediators. We investigated the hypothesis that PKA inhibits Rho GTPases, which are regulator proteins believed to mediate endothelial barrier dysfunction. Stimulation of human microvascular endothelial cells (HMEC) with thrombin (10 nM) increased activated RhoA (R...
متن کاملHeat shock protein 90 inhibitors prevent LPS-induced endothelial barrier dysfunction by disrupting RhoA signaling.
Permeability of the endothelial monolayer is increased when exposed to the bacterial endotoxin LPS. Our previous studies have shown that heat shock protein (Hsp) 90 inhibitors protect and restore LPS-mediated hyperpermeability in bovine pulmonary arterial endothelial cells. In this study, we assessed the effect of Hsp90 inhibition against LPS-mediated hyperpermeability in cultured human lung mi...
متن کاملRutin Prevents High Glucose-Induced Renal Glomerular Endothelial Hyperpermeability by Inhibiting the ROS/Rhoa/ROCK Signaling Pathway.
Diabetic nephropathy is a progressive kidney disease caused by damage to the capillaries in the glomeruli. Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy. Hyperglycemia-induced endothelial hyperpermeability is crucial to diabetic nephropathy. Rutin has beneficial effects on diabetic nephropathy, but the exact me...
متن کاملFibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism.
OBJECTIVES The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. METHODS AND RESULTS Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydrau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2011